Spatial Upsampling of Head-Related Transter
Functions Using a Physics-Informed Neural
Network

Fei Ma, Member, IEEE, Thushara D. Abhayapala, Senior Member, IEEE,
Prasanga N. Samarasinghe, Senior Member, IEEE and Xingyu Chen, Member, IEEE

Abstract—Head-related transfer function (HRTF) capture the
information that a person uses to localize sound sources in
space, and thus is crucial for creating authentic virtual acoustic
experiences. However, practical HRTF measurement systems may
only measure a person’s HRTFs sparsely, and this necessitates
HRTF upsampling. This paper proposes a physics-informed
neural network (PINN) method for HRTF upsampling. The
PINN exploits the Helmholtz equation, the governing equation
of acoustic wave propagation, for regularizing the upsampling
process. This helps the generation of physically valid upsamplings
which generalize beyond the measured HRTF. Furthermore, the
size (width and depth) of the PINN is set according to the
Helmholtz equation and its solutions, the spherical harmonics
(SHs). This makes the PINN to have an appropriate level of
expressive power and thus does not suffer from the over-fitting
problem. Since the PINN is designed independent of any specific
HRTF dataset, it offers more generalizability compared to pure
data-driven methods. Numerical experiments confirm the better
performance of the PINN method for HRTF upsampling in both
interpolation and extrapolation scenarios in comparison with the
SH method and the HRTF field method.

Index Terms—Head-related transfer function (HRTF), physics-
informed neural network (PINN), spherical harmonics, spatial
audio, virtual acoustics.

I. INTRODUCTION

EAD-related transfer function (HRTF) is defined as the

ratio between the sound pressure at a point in the ear
canal and the sound pressure at the origin with the head
being absent [1]. HRTF characterizes the scattering effect of
a person’s torso, head, and ears with respect to the direction
of sound [1], and contains the information that a person uses
to localize sound sources in space. Spatial audio and virtual
acoustic systems rely on the knowledge of HRTF to reproduce
personalized acoustic experience [2].

However, the dependence of HRTF on a person’s anatomy
makes HRTF highly individual, and thus accurate measure-
ment of HRTF over a large number of directions is desirable
for creating an authentic acoustic experience [1]. Nonetheless,
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a complete measurement of a person’s HRTF is both time-
consuming and expensive [1]. Practical HRTF measurement
systems may only conduct the measurement over a limited
number of directions due to the inconvenience of arranging
loudspeakers over a whole sphere [1] or to reduce the measure-
ment time, resulting in spatially sparse HRTF datasets. (Al-
though, fast and continuous measurement systems can alleviate
the time constraint [3], [4], the high cost of these systems and
the necessary anechoic chambers make them inaccessible to
most people.) Spatially sparse HRTF datasets can compromise
source localization in virtual acoustic environments [5], [6],
prompting researchers to upsample them into spatially dense
HRTF datasets.

HRTF upsampling consists of two scenarios: interpolation
and extrapolation. ! For the interpolation scenario, HRTF is
measured over a limited number of directions to reduce the
measurement time, and the aim is to estimate the unknown
HRTF whose direction is between those of the measured
ones. Early works on interpolation were mainly based on
the expansion of HRTF into some linear functions, such as
spherical harmonics (SHs) [11]-[13], principle components
[14]-[16], spline functions [17], and wavelet functions [18].
Recent works, on the other hand, are mainly based on non-
linear modeling with neural networks (NNs) such as auto
encoder [19]-[21], generative adversarial networks [22], [23],
feature-wise linear modulation [24], convolutional neural net-
work [25], and neural field [26].

To simulate sound from downstairs or the sound of foot-
steps, we need HRTF for low evaluation angles. However,
the presence of people within the HRTF measurement system
makes the measurement at low evaluation angles difficult. This
results in the HRTF extrapolation scenario, and the aim is
to estimate the unknown HRTF whose direction is beyond
those of the measured ones. Although HRTF extrapolation is
a task of must, it is often overlooked by existing research.
Up to data, there are only a few related works. Zhang et
al. developed iterative methods [27], [28], which successively
estimate the unknown HRTF for missing directions. The
methods successfully recover a low order HRTF over a full
sphere with one quarter of data missing [27]. Duraiswami et
al. proposed a regularized SH method [11] which estimates
the unknown HRTF at the expense of reduced accuracy in

I'This paper focuses on direction related HRTF upsampling. Distance related
HRTF upsampling [7]-[10] is not addressed.



representing the measured HRTF. Ahrens et al. proposed a
non-regularized SH method [29] which estimates the unknown
HRTF based on a low-order least-square fit to the measured
HRTF and estimations of the unknown HRTF.

There are two limitations with above mentioned upsampling
methods. First, most of the conventional linear function ex-
pansion methods, such as SH methods [11], [27], had a lim-
ited exploitation of additional information in the upsampling
process. Their upsamplings are essentially transformations of
the information that is contained in the measured HRTF, and
thus their performance is constrained by the diversity of the
measured HRTF. It was found that by exploiting the scattering
field of a rigid sphere, the performance of SH methods can
be improved [30]. Second, recent NN based methods [19]-
[26], which try to build up implicit associations between HRTF
with additional information (such as human anatomy and ear
geometry), are dataset dependent [26]. This makes it difficult
for them to extrapolate beyond the training data.

In recognition of these limitations, we adopt an HRTF
upsampling strategy based on the physics-informed neural
network (PINN) [31]-[34]. PINN is one kind of NNs which
integrate physical knowledge, i.e., the governing partial dif-
ferential equation (PDE) of a physical phenomenon, into its
architecture [31]-[34]. The physical knowledge helps a PINN
to model the physical phenomenon besides physical quantities.
Since the seminal works of Raissi and his colleagues [31],
[32], PINNs have been successfully applied in many areas
such as earthquake modeling [35], [36], propeller-noise pre-
diction [37], and wave-field (sound-field) modeling [38]-[42].

Owing to the principle of acoustic reciprocity [1], HRTF can
be regarded as the sound-field generated by a source placed
inside of the ear canal. This sound-field together with other
sound-fields obey the Helmholtz equation, the governing PDE
of acoustic wave propagation [43].

This fact inspires us to develop a PINN method for HRTF
upsampling, and we inform the method with physical knowl-
edge from two aspects. First, a modified form of the Helmholtz
equation is used as the PDE loss. This helps the PINN
to generate physically valid upsamplings which generalize
beyond the training data, and relieve the burden of balancing
the PDE loss and the data loss with additional parameters.

Second, we set the size of the PINN method according to
the SH decomposition of HRTF and the Helmholtz equation.
Although the PDE loss helps the PINN method to generate
physically valid output, it also prompts the output to be
zero [44]-[46], which is a valid but trivial solution of the
Helmholtz equation [44]. This problem can be mitigated with
improved gradient updating strategy [44], [45]. Nonetheless,
the strategy [44], [45] is computationally expensive and re-
quires expert knowledge to tune additional parameters. We
found that this problem is due to over-fitting, i.e., over-
parameterization of PINN methods. On recognition of the
over-fitting, we design the PINN method with an appropriate
level of expressive power by exploiting the solution of the
Helmholtz equation in spherical coordinates, the SHs. Specif-
ically, we set the PINN method width (the number of neurons
in each hidden layers) as half of the dimensionality of HRTFs
under SH decomposition [47]-[49], and the depth of it (the
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Fig. 1. Layout of a typical HRTF measurement system, which measures the
HRTF between a loudspeaker placed on the sphere So and a microphones
placed at a specific position inside of the person’s ear, ideally close to the
ear drum. The person is facing the positive x-axis. HRTF is measured from
various directions by rotating either the loudspeaker or the person.

number of hidden layers) as three. This setup separates the
proposed PINN method apart from general PINN methods in
other works that suffer from the over-fitting problem due to
inappropriate design of the network [44]-[46].

The effective exploitation of the data-independent
Helmholtz equation and the SHs compensates for the
lack of measured data, and grants the PINN method with
extrapolation ability. The performance of the PINN method
for upsampling HRTF in both interpolation and extrapolation
scenarios are confirmed by numerical experiments, and
compared with the SH method [11] and the HRTF field
method [26].

The rest of this paper is organized as follows. The prob-
lem of interest is introduced in Sec. II. We review the SH
method [11] in Sec. IIl and propose a PINN method in
Sec. IV. In Secs. V and VI, we compare the performance of the
PINN method, the SH method [11], the standard NN method,
and the HRTF field method [26] using interpolation and
extrapolation experiments, respectively. Section VII discusses
the experiment results, points out directions of improvement,
and presents limitations of the PINN method. Section VIII
concludes this paper.

II. PROBLEM FORMULATION

Figure 1 presents the layout of a typical HRTF measurement
system [1]. Let (z,y,2) and (r,0,¢) denote the Cartesian
coordinates and the spherical coordinates of a point with
respect to the center of a person’s ears. We denote HRTF
as P(w,r,0,¢) in spherical coordinates or as P(w,z,y,z)
in Cartesian coordinates, where w = 27 f is the angular
frequency and f is the frequency. Hereafter, HRTF is evaluated
on a single sphere, and thus we skip the sphere radius r
when representing HRTF and related acoustic quantities for
notational simplicity.

As shown in Fig. 1, due to the presence of the person’s
body, the measurement system can not measure HRTF for low



elevation angles, i.e., # < —60°. To reduce the measurement
time, the system may only measure HRTF over a limited
number of directions. Both of these two scenarios will result
in spatially sparse HRTF datasets, which may be insufficient
for virtual acoustic applications [5], [6].

Owing to the principle of acoustic reciprocity [1], HRTF can
be regarded as a sound-field [47]. This sound-field, as well as
other sound-fields, obeys the governing PDE of acoustic wave
propagation, i.e., the Helmholtz equation, [43]

V2P + (w/c)*P =0, (1)

where c is the speed of sound, and V? denotes the Laplacian
operator. In spherical coordinates, the Laplacian is given
by [43]
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In this paper, by exploiting the Helmholtz equation Eq. (1)
and its solution in spherical coordinates, the SHs, we aim to
upsample a spatially sparse HRTF dataset {P(w, 6y, (bq)}?:l
or equivalently {P(w,xq,yq,zq)}gzl into a spatially dense
HRTF dataset. (@ is the number of sampling points and q is
the index of a particular sampling point.)
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ITII. SPHERICAL-HARMONICS-BASED METHOD

In this section, we first briefly present the SH decomposition
of HRTF and then review the regularized SH method [11] for
HRTF upsampling. HRTF is expressed in spherical coordinates
for the ease of SH decomposition.

HRTF can be decomposed into SHs as [43]

P ~ YA, 4)

where P = [P(UJ, 91» ¢1)7 P(wv 923 ¢2)a sy P(wv an d)Q)]T de-
note the measured HRTF for directions (6, ¢q)22:1, ()T is the
transpose operation, A = [Ago(w), A1,-1(w), ..., Ay,u(w)]T
denote the SH coefficients, and

Y00(917¢1) Ylil(eluqbl) Y[}J(917¢1)
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denotes a @ x (U + 1)? matrix whose entries are SHs Y,V (-, -)
of order u and degree v. SHs are defined as [50]

_ | .
Y (0,¢) = \/(MJ(?E:LU|)|!v|)'7>u”|(sin 0)e?,  (6)

where | - | is the absolute value operator, Pl (+) is the associ-
ated Legendre function of order u and degree |v], i = /—1 is
the imaginary unit, and e(") is the exponential function. SH is
the solution of the Helmholtz equation for the elevation angle
0 and the azimuth angle ¢ [43].
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Fig. 2. Dimensionality U of HRTFs under SH decomposition and the PINN
width W as functions of frequency f.

In Eqgs. (4) and (5), U is the dimensionality of HRTF under
SH decomposition and can be approximated as [47], [48]

U= [2mfru/cl, )
where [-] is the ceiling operation, and
02m, f<3kHz,
Th = ®)
0.09m, f>3kHz,

is the radius of human head, including the head-and-torso
scattering effect. In this paper, for simplicity, we approximate
Eq. (7) as

[£/250], f < 3kHz,
U~{ 12, 3kHz < f < 6 kHz, 9)
[£/500], f > 6kHz,

and present U as a function of frequency in Fig. 2 for
reference. Since the dimensions of human heads are highly
individual, Eq. (9) and Fig. 2 represent approximations only.
The regularized SH method [11] first estimates the SH
coefficients A = [Ag o(w), A1, _1(w), ..., Ay.y(w)]T through

A=(XYTY+H)'YTP, (10)

where H is a (U + 1)? x (U + 1)? diagonal matrix whose
diagonal entries are h;; = 1+ u(u + 1) and v is the reg-
ularization parameter. The regularization limits the estimated
SH coefficients A, especially the high-order coefficients, from
taking large values [11]. To estimate the SH coefficients up
to order U, the number of measured HRTFs needs to be
sufficiently large, i.e., Q > (U + 1)? [47], [48].

The HRTF for an arbitrary direction (6., ¢.) can be esti-
mated as

Peit(w, 0e, b)Y A, (11)

where Y. = [Y (0, be), YT (0, de), - Y (Be, de)].

IV. PHYSICS-INFORMED-NEURAL-NETWORK-BASED
METHOD

In this section, we first briefly introduce general PINN
methods, then propose a PINN method for HRTF upsampling,
and at last provide rationals for the configuration of the
proposed PINN method.
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Fig. 3. Structure of the proposed PINN method for modeling the real and left part HRTF: The inputs are Cartesian coordinates (z,y > 0, 2) and the output
is HRTF estimation PFF,{I(w, x,y > 0, z). There are L hidden layers with W neurons in each hidden layer, and the activation function is tanh. Data loss and
PDE loss are calculated with respect to HRTF estimation PIE{I (w,z,y > 0, 2) and its Laplacian V2, respectively.

A. General PINN methods
PINN methods are commonly constructed as multi-layer

fully connected feed-forward neural networks [31]-[34]. The
functionality of one layer is

Px)=[o(xTwi+b1),0(xTwa+b2),....0xTw;+bs)],
(12)

where x is the input variable vector, {W}]:1} are the weight
vectors, {b; }3]:1 are the biases, J is the number of neurons,
and o(-) is the activation function. The overall functionality
of a PINN method is the composition of L layers

P(x;¢) = Pr(...(P2(P1(x)))),

where ( represents the set of trainable parameters, and P (x;¢)
represents the network output. ¢ is adjusted by minimizing a
loss function

(13)

% z (Pq — If’(xq; C)>2 + ALppr(x;(),(14)

g=1

L=(1-)

where {xg, Pq}g?:1 are input-output training data pairs which
are obtained by testing and measuring a physical system,
Lppr(x;() corresponds to the residual of the governing
PDE, and A is a regularization parameter which balances the
contributions of two loss terms to the total loss £.

B. Proposed PINN method

We use four PINN methods to model the HRTF for one ear
of a person at a single frequency w. Specifically, for

1) the real and left part PR(w,z,y > 0, 2);

2) the real and right part PR (w,z,y < 0, 2);

3) the imaginary and left part P'(w,x,y > 0, 2);

4) the imaginary and right part P'(w,z,y < 0, 2).
The superscripts (-)* and (-)' denote the real part and the
imaginary part of a value, respectively. With the person facing
the positive z-axis as shown in Fig. 1, y > 0 and y < 0 denote
the left side HRTF and the right side HRTF, respectively.

The structure of the PINN method for modeling the real
and left part HRTF PR(w, 2,y > 0, z) is shown in Fig. 3.

The loss function is given by

Q
1 .
L(w) = 0 Z(PR(w7xq,yq >0,2,) — PRi(w,q,y4 > 0,2,))?
q=1

Ldata(w)

+ PPRI(waxdayd > 07 Zd))27

D A
1 v2F)1£{I((“)7xd7 Yd > 07 Zd)
tp 2l (w]oP

Lppe (W)

15)

where the Laplacian operator V2 is given by Eq. (3), {z, y, >
O,zq}qQ:1 are Cartesian coordinates of the measured HRTF
PRw,zq,y, > 0,29), {za,ya > 0,2zq}}, denote the
Cartesian coordinates (or directions) of the unknown HRTF we
want to upsample and is a super set of {(z4,y, > 0, zq)}qul,
and L£4ata(w) and Lppr(w) denote data loss and PDE loss,
respectively. Note that we regard HRTF as a sound-field
around a human head and thus the Cartesian coordinates
in Eq. (15) correspond to (r,6,0 < ¢ < 7).

Except the training data and the output, the structures of
PINN methods for modeling other three parts and the loss
functions are identical to Fig. 3 and Eq. (15), respectively.
Once trained, we combine the outputs of four PINN methods
to arrive at the complex value HRTF for a single ear of a
person at a single frequency, i.e.,

pPI(wax7y)Z) = PPR}(M"/I"7:U > 072)
Ui Pl(w,z,y>0,2)
U If’lﬁl(w,x,y <0,2)

Ui Pl(w,z,y <0,2), (16)

where U is the union operator. Denote (f.,®.) as an arbi-
trary direction, the PINN method estimates HRTF for that
direction as Ppl(w,xe,ye,ze), where (2, Ye, z.) correspond
to (rha 983 ¢8)

We use four PINN methods to model HRTF for two reasons.
First, when the loudspeaker is at the same side with the ear
the magnitude of HRTF tends to be larger than the magnitude
of HRTF when the loudspeaker is at the opposite side to



the ear. The magnitude difference subsequently affects their
contributions to the loss function, making a single PINN
method difficult to attain consistent upsampling accuracy for
both sides. Second, training real-valued neural networks is
simpler compared to their complex-valued counterparts [51].

C. Configuration rationals

The configuration rationals for the proposed PINN method
are provided below:

1y

2)

3)

4)

Cartesian coordinates vs spherical coordinates:
For the PINN method, HRTF is expressed in Carte-
sian coordinates instead of spherical coordinates for two
reasons. First, the Laplacian in spherical coordinates,
Eq. (2), can be numerically unstable due to the sin@
term in denominators. Second, HRTF is evaluated on a
single sphere, and thus there is no variations along the
radial direction. This makes the PINN unable to estimate
the first-order and second-order radial gradient used for
calculating the Laplacian in spherical coordinates, Eq. (2).
Frequency-wise upsampling:
The proposed method focuses on upsampling HRTF for
each frequency. This allows better control of the training
process with respect to frequency as shown in Helmholtz
equation and PINN width below.
To model HRTF of a person at all frequencies and at
two ears, we need to build L, X 2 x 4 = 8 L,
PINN methods, where L, is the number of frequencies
of interest.
Loss:
The data loss Lgata(w) prompts the PINN method
output to approximate the measured HRTE, ie,
Ppi(w, 24, Yq, 2¢) = P(w, Tq, yq, 24) for g € [1,Q].
The PDE loss £ppg(w) regularizes the PINN method
output to conform with the Helmholtz equation at
{(x4,ya, 2a) Y1, a super set of {(zq, Yq, 2) }oy. This
helps the PINN method to generate physically valid
output beyond the training data. The regularization in
Eq. (10), on the other hand, may not enable the SH
method to generate physically valid output as shown in
the experiment section.
Helmbholtz equation:
Generally speaking, PINN methods are trying to solve
multiple loss optimization problems [52]. Additional pa-
rameters, such as A in Eq. (14), are normally used
to balance different loss terms [52]. Although tuning
additional parameters may improve the performance of
PINN methods, we decided not to do so.
Instead, we modify the Helmholtz equation Eq. (1) to be

vip

(@/0)? + P =0. 17)
Corresponding modifications are made to the PDE loss
in Eq. (15). Under the modification, the PDE loss will
have the same physical unit as the data loss, and hence
balancing is not needed. Without the need for tuning
loss-balancing parameters [52], the training of the PINN
method is simplified.

5) PINN method width:

Based on our knowledge of SHs, we provide guidance on
the PINN method width, the number of neurons in each
hidden layer.

Although HRTF is defined over all directions, the most
interesting directions are on the zy plane [1], where the
SH decomposition of HRTF reduces to

U u
Pw,0=0,6)~> Y Auu(w)Y,(0,0)

u=0v=—u

U u
= Z Z Au,v(w)

u=0v=—u

y ¢ (21 D= oD ) v

4 (u =+ |v])!
U
= > Ay(w)e™?, (18)
v=—U
and
U
B (2u+ 1) (u—Jo!

Au(w)uzl:vAw(w)\/ Tt opr e (0, (9)

is obtained by manipulating the second and third lines of
Eq. (18). Eq. (18) indicates that HRTF on the xy plane
can be expressed by 2U + 1 basis functions with related
weights {e™?, A, (w),v € [-U,U]}.
Based on Fig. 3, from the output’s point of view, HRTF
on the xy plane can be expressed as

w
Ppl(w, T, Y,z = 0) = ZUjo + O’ob, (20)
j=1

where o; denotes the value of the j-th neuron on the last
hidden layer, w; is the corresponding weight, and the bias
b can be regarded as the weight for a linear activation
function o. {0}V are implicit functions of Cartesian
coordinates.

If the PINN method learns the underlying HRTF, then for
corresponding ¢ and (z,y) there must be

P(w,0 =0,¢) ~ Ppi(w,z,y,2=0), (1)

and hence

U 4 w
Z Ay (w)e™? ~ Z ojw; + ogb, (22)

v=—U j=1

though they are expressed in different coordinates and
with different basis functions. Based on Eq. (22) and the
minimum description length principle [53], we choose the
PINN method width as

W+1=20+1, or W =2U. (23)

In Sec. IV-B, four identical PINN methods are used for
modeling the left/right and real/imaginary parts of HRTF.
This prompts us to arrive at the final choice for the width
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Fig. 4. Directions of the known HRTF and the unknown HRTF for the
interpolation experiment.

(the number of neurons in each hidden layer) of a PINN

method as
W =2U/4
=U/2
[f/500], f < 3kHz,
~ < 6, 3kHz < f <6kHz, (24)
[f/1000], f > 6kHz.

The width W as a function of frequency is presented in
Fig. 2 for reference. Note that similar to Egs. (7) and (9),
Eq. (24) represents approximations only.
6) PINN depth:

For the proposed PINN method, with no additional pa-
rameters for different loss terms in Eq. (15), the activation
function fixed to be tanh, and the width set to be
W = U/2, the last parameter that could determine
its performance is the depth L (the number of hidden
layers), other than the training data. We found that a
depth of L = 3 is a suitable choice, which balances
the upsampling accuracy with the model complexity. This
may be because the Helmholtz equation is a second-order
PDE or three variables (x,y, z) are needed to determine
the HRTF for a direction. In future studies, we plan to
further analyze the Helmholtz equation and its solutions
to determine an optimal depth L.

V. INTERPOLATION EXPERIMENT

Numerical experiments were conducted in this section to
interpolate unknown HRTF whose direction is between those
of measured ones.

A. Data processing

Experiments were conducted on the HUTUBS dataset [50],
subject 11, 12, ... 50, left-ear HRTF. Based on SH coefficients
up to 35-th order [50], HRTF for 330 directions, where 6 €
[-60°, —48°, ...,60°] and ¢ € [4°,16°, ..., 352°], is calculated
according to Eq. (4) and used as the known HRTF; HRTF
for 930 directions, where 6 € [—60°, —54°,...,60°] and ¢ €
[4°,10°, ...,358°], is calculated according to Eq. (4) and used
as the unknown HRTF (ground-truth). Directions of the known
HRTF and the unknown HRTF for the interpolation experiment
were shown in Fig. 4. The magnitudes of all HRTFs were
normalized to be within [0, 1].

The 256 tap head-related impulse response [50], sampled at
44100 Hz, was transformed into frequency domain through
discrete Fourier transform, resulting corresponding HRTE.
HRTF was evaluated at [2067, 4134, 6202, 8269, 10336,
12403, 14470] Hz, which approximate multiples of the base
frequency 44100/256 Hz. Hereafter, we referred to these
frequencies as 2.1, 4.1, 6.2, 8.2, 10.3, 12.3, and 14.4 kHz
for notational simplicity. HRTF was not evaluated in higher
frequencies (f > 14.4 kHz) because they do not contribute
significantly to the perception of source location [1], and was
not evaluated in lower frequencies (f < 2.1 kHz) because
as shown in Sec. V-E and Sec. VI-E the simple SH method
achieved better performance than other methods.

B. Implementation

SH method:

We implemented the SH method [11] following Egs. (4) -
(11), and set v = 0 in Eq. (10) according to a trial-and-error
process.

PINN method:

The known HRTF and corresponding Cartesian coordinates
were the training data pairs for calculating the data loss
LData(w). Cartesian coordinates of the known HRTF and the
unknown HRTF were combined and used for calculating the
PDE loss SPDE(W)-

To investigate how depth L and width W influence the
interpolation performance, we implemented the PINN method
in seven cases:

HL=2W=U/2

2y L=2,W=U;

3) L=3W=U/2

4) L=3, W=U;

5 L=4,W=U/2;

6) L=4,W=U;

7 L =4, W =50.

For the first six cases, the width W varied with frequencies.
For the last case, the width W was fixed.

We used the Tensorflow library for training, initialized the
trainable parameters according to the Xavier initialization [54],
set the activation function to be tanh, chose the ADAM
optimizer with a learning rate of 0.001, and trained the PINN
methods for 10 epochs.

NN method:

Another method was implemented identical to the PINN
method, except that the PDE loss £ppg(w) was not calculated
and thus was not used for regularizing the network output.
Hereafter, this method was denoted as the NN method. The NN
method was implemented with different numbers of hidden
layers and neurons same to the first four cases of the PINN
method.

HRTF field method:

An additional HRTF field method [26] was implemented using
the Sinusoidal Representation Network (SIREN) architecture,
which is also a multi-layer fully connected feed-forward neural
network but using sin as the activation function. The method
was trained three times. In the first time, left-ear HRTF of



subject 1-10 and 25-96 was used as training set, and left-
ear HRTF of subject 11-24 was used as testing set. In the
second time, left-ear HRTF of subject 1-24 and 40-96 was
used as training set, and left-ear HRTF of subject 25-39 was
used as testing set. In the third time, left-ear HRTF of subject
1-35 and 51-96 was used as training set, and left-ear HRTF
of subject 36-50 was used as testing set. The three time
training was conducted because we found that the method
was unable to converge if trained with less than 70 subjects’
HRTF data. For each time, the training data consisted of 330
known HRTFs and corresponding Cartesian coordinates from
the test set, along with 1260 known plus unknown HRTFs and
corresponding Cartesian coordinates from the training set; the
testing data consisted of 1260 known and unknown HRTFs
and corresponding Cartesian coordinates from the test set. We
set the learning rate following [26] and trained for 240 epochs.
Please refer to [26] for the theory and implementation of the
HRTF field method.

C. Performance evaluation

The performance of each method was evaluated based on
the interpolation error

ety [P(, Oc, Be) = Plw, Oc, )|
oy |P(w, 0, 6c)|
where P(w, 0., ¢.) and P(w, 0., ¢.) were the unknown HRTF

(ground-truth) and its estimation generated by different meth-
ods at directions {(0,, ¢.)}23", respectively.

E(w)=20log;,

,» (25)

D. Result: at a frequency for one subject

We presented an interpolation result in Fig. 5, which showed
magnitudes of the left-ear HRTF of subject 40 at 14.4 kHz,
ground-truth, interpolations and interpolation errors of differ-
ent methods.

Note that, in captions of Figs. 5, 6, 8, and 9, we used “P,
L =3W =1U/2, -84 dB” to denote that the PINN method
with depth L = 3 and width W = U/2 achieved interpolation
error of -8.4 dB. Other captions could be interpreted similarly.

In the case, the dimensionality of HRTF under SH decompo-
sition was U = [27 fry,/c] = 29. With only 330 < (29 +1)2
known HRTFs, the SH method was unable determine the SH
coefficients up to U = 30, and hence was unable to accurately
interpolate the unknown HRTF.

Referring to Fig. 4 and Fig. 5 (c) - (f), we saw the NN
methods assigned physically invalid values to the unknown
HRTFs, and the interpolation errors were larger than 0 dB in
all four cases.

Thanks to the regularization of the PDE loss, the PINN
methods did not assigned physically invalid values to the
unknown HRTFs as shown in Fig. 5 (g) - (m). Nonetheless, the
PINN methods tended to assign zero to the unknown HRTFs,
especially the deeper and wider PINN method shown in Fig. 5
(m). This indicated over-fitting and demonstrated the difficult
of training a PINN [44]-[46]. Nonetheless, the PINN method
with depth L = 3 and width W = U/2 showed the least
interpolation error of -8.4 dB.

As shown in Fig. 5 (n), the HRTF field method failed to
capture the structure of HRTF, and the interpolation error was
about —1.3 dB.

E. Result: across all frequencies and subjects

Figure 6 showed the interpolation errors across all frequen-
cies and subjects.

The interpolation errors of the SH method were the lowest
among all methods in lower frequency range, where f =
2.1,4.1 kHz. With the increment of frequency, the SH method
interpolation error increased as well as the interpolation errors
all other methods.

The NN method interpolation errors of four cases were
similar across all frequencies. Unlike other methods, the
interpolation errors of NN methods could go above 0 dB.

For frequency f < 4.1 kHz, the PINN method interpolation
errors were similar to those of the NN methods. However, for
f > 8.2 kHz, the PINN method interpolation errors were lower
than those of the NN methods. in high-frequency range where
f > 10.3 kHz, the PINN method with L = 3 and W = U/2
demonstrated the smallest average interpolation errors among
the 40 subjects for about —14 dB at 10.3 kHz, about —12.5
dB at 12.3 kHz, and about —9 dB at —14.4 kHz.

The interpolation errors of the HRTF field method showed
the least variance across the frequencies. However, it did not
achieved the smallest interpolation errors at any frequency.

VI. EXTRAPOLATION EXPERIMENT

Numerical experiments were conducted in this section to
extrapolate the unknown HRTF whose direction is beyond
those of the measured ones.

A. Data processing

Experiments were also conducted on the HUTUBS
dataset [50], subject 11 to 50, left-ear HRTF. Based on
SH coefficients up to 35-th order [50], HRTF for 675
directions, where 6 € [-56°,—48° ...,56°] and ¢ €
[4°,12°,...,356°], were calculated according to Eq. (4) and
used as the known HRTF; HRTF for 270 directions, where 6 €
[—80°, —72°, —64°,64°,72°,80°] and ¢ € [4°,12°, ..., 356°],
were calculated according to Eq. (4) and used as the unknown
HRTF (ground-truth). Directions of the known HRTF and the
unknown HRTF for the extrapolation experiment were shown
in Fig. 7. HRTF was evaluated at the same frequencies as in
Sec. V. The magnitudes of all HRTFs were normalized to be
within [0, 1].

B. Implementation

SH method:

We implemented the SH method [11] following Egs. (4) -
(11), and set v = 107%,107%,107,10*,1072,10"*,1073
for f = 2.1, 4.1, 6.2, 8.2, 10.3, 12.3, 14.4 kHz in Eq. (10)
according to a trial-and-error process.

PINN method and NN method:

The implementations of the PINN method and the NN method
were identical to Sec. V B, except the training data and output.
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Fig. 5. Interpolation results: left-ear HRTF of subject 40 at 14.4 kHz,
magnitudes of the ground-truth and interpolations by different methods.
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HRTF field method:

The implementation of the HRTF field method [26] was simi-
lar to Sec. V B, except the training and testing data. Training
data consisted of the 675 known HRTFs and corresponding
Cartesian coordinates from the test set, along with 945 known
plus unknown HRTFs and corresponding Cartesian coordinates
from the training set. Testing data consisted of 945 known
plus unknown HRTFs and corresponding Cartesian coordinates
from the test set. Please refer to [26] for the theory and
implementation of the HRTF field method.

C. Performance evaluation

The performance of each method was evaluated based on
the extrapolation error

S0 P (W, be, be) — P(w, 8, 6c)|
S0 P (w, be, )|

where P(w, 0., ¢.) and P(w, 0., ¢.) were the unknown HRTF
(ground-truth) and its estimation generated by different meth-

ods at directions {(., ¢.)}27", respectively.

E(w) = 201logy, ,(26)

D. Result: at a single frequency for one subject

We presented an extrapolation result in Fig. 8, which
showed the magnitudes of left-ear HRTF of subject 20 at 14.4
kHz, ground-truth, extrapolations and extrapolation errors of
different methods.

In the case, the SH method, the NN methods, and the HRTF
field method all failed to extrapolate the unknown HRTEF.
Owing to the regularization of Eq. (10), the SH method [11]
was unable to accurately represent the known HRTF. Similar
to Fig. 6, the NN methods assigned physically invalid values
to the unknown HRTFs.

As shown in Fig. 8 (g) - (m), without reducing the accuracy
of representing the known HRTF and without assigning physi-
cally invalid values to the unknown HRTF, the PINN methods
showed better extrapolation results than the SH method, the
NN methods, and the HRTF field method. The PINN methods
with width W = U/2 with depth L = 3 and L = 4
achieved the least extrapolation error of —5.6 dB and —6.0
dB, respectively.

E. Result: across all frequencies and subjects

Figure 9 showed the extrapolation errors across all frequen-
cies and subjects. Comparing Fig. 9 with Fig. 6, we observed
that at the same frequency the extrapolation errors were larger
than the interpolation errors for all methods.

Small extrapolation error £(w) < —20 dB of the SH method
could only be achieved at frequency f = 2.1 kHz. For
frequency above 4.1 kHz, the extrapolation errors of the SH
method downgraded to be around O dB.

Below 8.2 kHz, the extrapolation errors of the NN methods
were comparable to those of the PINN methods. However,
above 10.3 kHz, the PINN method extrapolation errors were
consistently smaller than corresponding NN methods. At f =
12.3,14.3 kHz, the PINN method with depth L = 3 and width
W = U/2 achieved the smallest average extrapolation errors
of -4.8 dB and -4.7 dB, respectively.

The HRTF field method did not exhibit any extrapolation
ability.

VII. DISCUSSION
A. Experiment results

From the experiment results shown in Secs. V and VI
we saw that all methods’ performance downgraded with the
increment of frequency.

The SH method’s performance was the best in low-
frequency range, but its performance down-gradation was
significant in high-frequency range.

The NN methods achieved performance comparable to those
of PINN methods for f < 6.2 kHz. Without regularization to
the output, the NN methods assigned physically invalid values
to the unknown HRTF in high-frequency range, f > 12.3 kHz.

The PINN methods demonstrated the least upsampling
errors in high-frequency range, f > 10.3 kHz, where the
upsampling was the most challenging.

The HRTF field method was useful for the interpolation
scenario only.

Based on these results, it is recommended to employ the
SH method for HRTF upsampling in low-frequency range, the
NN method in mid-frequency range, and the PINN method in
high-frequency range, respectively.

B. Regularization

Fundamentally, HRTF upsampling is an ill-conditioned
problem. To avoid generating physically invalid upsamplings
like the NN methods, all upsampling methods have to exploit
additional information to regularize the upsampling process.

The SH method [11] achieved the regularization by con-
straining the amplitudes of the estimated SH coefficients
of high-orders. However, the high-order SH coefficients are
necessary to represent the fine details of HRTF in high-
frequency range. Thus, constraining their amplitudes will
inevitably downgrade the upsampling performance.

The HRTF field method [26], as well as other learning based
methods [19]-[25], achieved the regularization through learn-
ing implicit associations between direction (or ear geometry)
and HRTF. Their dependence on the training data makes them
lacks extrapolation ability as shown in Figs. 8 and 9.
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The proposed PINN method achieved the regularization
through the PDE loss which is based on the Helmholtz
equation. The Helmholtz equation dictates that sound pressure
is proportional to its Laplacian

1

(w/e)?
As shown in Figs. 5 and 8, this constrained the HRTF
upsamplings from taking physically invalid values like the
NN methods. Furthermore, the Helmholtz equation does not
depend on any HRTFs, and thus that the PINN method can
extrapolate the unknown HRTFs whose directions are beyond
those of the known HRTFs.

V2P. (27)

C. PINN width and depth

To accurately model the training data, researchers tended
to design PINN methods to be deep and wide [31]-[34].
As shown in Figs. 5, 6, 8, and 9, a deep and wide PINN
method not necessarily achieved the best upsampling re-
sults, especially in high-frequency range. This indicated over-
fitting [44]-[46].

To avoid over-fitting, we drew inspiration from the SH
decomposition of HRTFs, and recommended to set the PINN
width as W = U/2. As shown in Figs. 6 and 9, with the same
depth L, most cases the PINN methods with width W = U/2
performed better than the PINN methods with width W = U
in high-frequency range f > 10.3 kHz, and slightly worse in
low-frequency range f < 8.2 kHz.

Figures 6 and 9 also showed that, with the same width,
the PINN methods of depth L = 3 performed better than the
PINN methods of depth L = 2 in most cases, and comparable
or slightly better than the PINN methods of depth L = 4 in
high-frequency range f > 10.3 kHz.

Further considering that, as shown in Table I, the number
of trainable parameters of the PINN method with depth L = 3
and width W = U/2 was the second least, we recommended to
set the PINN method depth as L = 3 and width as W = U /2,
especially in high-frequency range f > 10.3 kHz. This could
reduce the training time.

Nonetheless, the deeper and wider PINN method with
depth L = 4 and width W = 50 did achieve the least
upsampling errors below 6.2 kHz as shown in Figs. 6 and
9. This indicated that a deep and wide PINN method may be
less susceptible to over-fitting in low-frequency range where
HRTFs are smoother.

The design of the PINN method, specifically its width and
depth, was still empirical. Further theoretical investigation is
needed to provide better guidance on the PINN method design.
This will be one of our future works.

D. HRTF extrapolation

Comparing Fig. 9 with Fig. 6, we saw that extrapolation
was much more challenging than interpolation. The -5 dB
extrapolation error of the PINN methods for f > 10.3 kHz was
smaller than those of other methods, but may not be enough
for accurate spatial audio reproduction. This indicated that
the Helmholtz equation regularization alone was insufficient

TABLE I
NUMBER OF TRAINABLE PARAMETERS OF THE PINN METHODS.

depth and width Number of trainable parameters | f < 14.4 kHz,U < 29
L=2,W=U/2 | U/JA+3U+1 < 316
L=2,W=U U?+6U +1 <1081
L=3W=U/2 | U?/24+70/2+1 < 556
L=3W=U 202 + 70U + 1 <2011
L=4,W=U/2 | 3U%/4+70/2+1 <781
L=4W=U 3UZ+7U + 1 <2911

L =4, W =50 7901

to help the PINN method to generate accurate extrapolations
in high-frequency range.

Exploration of additional information, such as human
anatomy, ear geometries, and cross dataset knowledge, is
necessary to further improve the performance of the PINN
method for HRTF extrapolation. This will be one of our future
works.

E. Limitations

Error metric:

In this paper, we evaluated the upsampling performance in
terms of the MSE of HRTF magnitudes only. Error metrics,
such as phase error of the upsampling and comparisons of
HRTF magnitude spectra over frequency between the ground-
truth and the upsampling in sagittal planes, would also be
helpful to assess the upsampling performance. Furthermore, it
is unclear to which extent the MSE shown in Figs. 5, 6, 8,
and 9 are perceivable. These limitations will be addressed in
a future work.

Computational complexity:

As shown in Table I, the number of trainable parameters
of the PINN methods is small. However, as mentioned in
Sec. IV-C 1), 8L,, PINN methods are needed to the model the
HRTFs of a person for two ears and for L,, frequencies. The
computational complexity will be large. The computational
complexity can be reduced by building a single PINN method
that models HRTFs for both ears over all L,, frequencies like
the HRTF field method [26]. This will be one of our future
works.

VIII. CONCLUSION

This paper proposed a PINN method for HRTF upsampling.
The proposed method exploited the Helmholtz equation, the
governing PDE of acoustic wave propagation, for constrain-
ing the upsampling process and generating physically valid
outputs. Furthermore, based on the dimensionality of HRTF
under SH decomposition and the Helmholtz equation, we set
the PINN with an appropriate width and depth. This helped the
PINN method to avoid the over-fitting problem. The Helmholtz
equation regularized PINN method with a suitable width and
depth outperformed the SH method, the NN method, and the
HRTF field method in both interpolation and extrapolation
experiments.
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