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ABSTRACT

Head-related transfer functions (HRTFs) are crucial for
spatial soundfield reproduction in virtual reality applica-
tions. However, obtaining personalized, high-resolution
HRTFs is a time-consuming and costly task. Recently, deep
learning-based methods showed promise in interpolating
high-resolution HRTFs from sparse measurements. Some of
these methods treat HRTF interpolation as an image super-
resolution task, which neglects spatial acoustic features. This
paper proposes a spherical convolutional neural network
method for HRTF interpolation. The proposed method re-
alizes the convolution process by decomposing and recon-
structing HRTF through the Spherical Harmonics (SHs). The
SHs, an orthogonal function set defined on a sphere, allow the
convolution layers to effectively capture the spatial features
of HRTFs which are sampled on a sphere. Simulation re-
sults demonstrate the effectiveness of the proposed method in
achieving accurate interpolation from sparse measurements,
outperforming the SH method and learning-based methods.

Index Terms— Head-related transfer function (HRTF),
spherical CNN, interpolation, spatial audio, soundfield repro-
duction

1. INTRODUCTION

The growing popularity of virtual reality and augmented real-
ity applications has sparked a research interest in spatial au-
dio rendering methods. One of the most popular methods is to
reproduce spatial audio binaurally through headphones. Bin-
aural reproduction relies on the head-related transfer function
(HRTF) [1] which represents the scattering effect of human
anatomy with respect to the direction of sound. The depen-
dence of HRTF on the anatomy of the listener (e.g., pinna,
head, and torso shape), makes it highly individual [1]. Con-
sequently, accurate HRTF measurement over a large number
of directions is desirable for authentic spatial audio reproduc-
tion.

However, HRTF measurement is a time-consuming and
expensive task [1]. To alleviate the burden of HRTF measure-
ment, researchers proposed to interpolate dense HRTF from
sparsely measured HRTF using methods such as bilinear [2]
and barycentric interpolation method [3, 4]. Spatial domain

interpolation was proposed to offer the advantage of preserv-
ing HRTF spatial features and ensuring the interpolation re-
sults were physically valid. The HRTF is decomposed onto
the spatial basis functions such as spherical harmonics [5, 6]
and principal components [7, 8].

Recently, researchers proposed convolutional neural net-
work (CNN) based methods [9, 10, 11] for HRTF interpola-
tion, and showed promising results. However, CNN was pri-
marily designed for processing signals in a 2D plane. Thus,
to process HRTF which is defined on a sphere, CNN-based
methods require complicated plane-sphere projection which
does not necessarily capture the spatial features of HRTF.
There exists the need to address the plane-sphere projection
while interpolating sparsely measured HRTF with a CNN.

In this paper, we propose a spherical CNN method [12,
13] for HRTF interpolation. The spherical CNN method ex-
ploits the spherical harmonics (SHs), an orthogonal function
set defined on a sphere, to resolve the plane-sphere projection
problem. We transform the magnitude of sparsely measured
HRTF into SH coefficients which are convoluted with kernel
functions expressed in the SH domain. The kernel function
captures the spatial features of HRTF. Then we convert the
convolution result into the magnitude of dense interpolated
HRTF. We demonstrate the HRTF interpolation performance
of the proposed spherical CNN method by comparing it with
the spherical harmonic method and learning-based meth-
ods. Our code is available at github.com/xingyuaudio/HRTF-
SCNN.

2. PROBLEM FORMULATION

2.1. HRTF interpolation

HRTF depends on the anatomy of a subject and the position of
a sound source [1]. Let H left(right)

id (Ω, l) denote the HRTF for
left(right) ear of subject id ∈ {1, . . . , ID}, source position Ω,
and frequency bin l ∈ {1, . . . , L}, ID is the number of sub-
jects, and L is the number of frequency bins. Source position
Ω = (r, θ, ϕ) is defined by spherical coordinates, the radius r,
the elevation θ = [−π

2 ,
π
2 ] and the azimuth ϕ = [0, 2π). Here-

after, the superscript for the left(right) ear and the subscript
for the subject number are omitted for notation simplicity.

In this paper, we focus on the far-field HRTF magnitude



spectra HM(Ω, l), i.e., the sound source is at a distance r >
1.2 m from the center of subject head [1],

HM(Ω, l) = 20 log10 (|H(Ω, l)|) , (1)

which is a logarithmic scale similar to human auditory per-
ception [14]. The far-field HRTF magnitude spectra HM(Ω, l)
exhibits minimal dependence on r [1], and thus we redefine
Ω = (θ, ϕ). In this regard, we treat HM(Ω, l) as a func-
tion of spherical signal H : S2 → RL, where S2 is a two-
dimensional manifold parameterized by (θ, ϕ).

The problem of interest is to interpolate spatially dense
HRTFs

{
HM(Ω, l),Ω ∈ Ωdense

}
from spatially sparse HRTFs

{HM(Ω, l),Ω ∈ Ωsparse}, where Ωsparse ⊂ Ωdense.

2.2. Conventional CNN

HRTF interpolation was considered as an image super-
resolution task by some researchers who adopt CNN lay-
ers [9, 10, 11]. The conventional CNN layer was originally
designed for planar images,

(I ∗ k)(x) =
∑
y∈Z2

I(y)k(x− y), (2)

where I is the input image on the 2D plane Z2 and k is the
learnable convolutional kernel [12]. This convolution exhibits
shift equivariance [12]

[LtI] ∗ k = Lt[I ∗ k], (3)

where Lt is translation operation and LtI is a shifted image.
The shift equivariance Eq. (3) implies that a kernel k shares
the same weight parameters at different regions of the im-
age I . The weight sharing effectively reduces the number of
model parameters and enhances model generalization capac-
ity.

However, HRTF is not on a plane but on a sphere where
the shift equivariance does not hold. This fact makes a direct
application of conventional CNNs unfeasible and necessitates
complicated projections of HRTF data [10, 11]. Considering
the limitations of existing methods, we propose a spherical
CNN method for HRTF interpolation. This method captures
spherical features, enabling efficient processing of HRTF data
which is distributed on a sphere.

3. METHODOLOGY

In this section, we propose a spherical CNN method for HRTF
interpolation. We first introduce spherical convolution, which
extends the idea of CNN to spherical signals, and then in-
troduce spectral transformation, which reduces the compu-
tational complexity of spherical convolution, and at last de-
scribe the model structure.

3.1. Spherical convolution

Spherical CNNs generalize CNN to operate on functions de-
fined on a sphere by using spherical convolution

(f ∗ k)(Ω) =
∫
g∈SO(3)

f(gη)k
(
g−1Ω

)
dg, (4)

where f and k are spherical functions, k is treated as a
learnable convolutional kernel, g is the rotational operator in
SO(3), η is the north pole [13]. The spherical convolution,
Eq. (4), exhibits rotational equivariance

[gf ] ∗ k = g[f ∗ k], (5)

which enables a spherical CNN to share the same set of
weight parameters within a kernel k across different regions
on a sphere. When considering HM, our goal is use HM ∗ k
to effectively capture spatial features.

3.2. Spectral transformation

In this section, we present spectral transformation [13], a
practical method that compute the spherical convolution
Eq. (4) which does not have a closed-form solution. Specif-
ically, the spherical convolution Eq. (4) is approximated
by three steps: (i) Spherical Harmonic Transform (SHT):
decompose spherical domain signals into SH coefficients,
(ii) multiplication of SH coefficients and kernel coefficients,
and (iii) Inverse Spherical Harmonic Transform (ISHT): con-
verts the multiplication back into the spherical domain.

Firstly, let the HRTF be measured at directions {Ωp}Pp=1

and L frequency bins. we decompose HRTF magnitude spec-
tra HM(Ω, l) onto the SHs:

H = Ya, (6)

where

H =

[
HM(Ω1, 1) · · · HM(Ω1, L)

.

.

.
. . .

.

.

.
HM(ΩP , 1) · · · HM(ΩP , L)

]
is a P × (NH + 1)2 matrix containing the real SH basis func-
tions,

Y =

[
Y00(Ω1) · · · YNHNH

(Ω1)

.

.

.
. . .

.

.

.
Y00(ΩP ) · · · YNHNH

(ΩP )

]
is Ynm(·) [15] of order n and mode m evaluated at P direc-
tions, and

a =

[
α00(1) · · · α00(L)

.

.

.
. . .

.

.

.
αnn(1) · · · αnn(L)

]
is a (NH + 1)2 × L matrix containing the SH coefficients.
To obtain accurate coefficients, the number of HRTF mea-
surements should greatly exceed the SH decomposition order,
P ≫ (NH + 1)

2. a can be calculated through

a = (Y⊺Y)
−1

Y⊺H. (7)



Fig. 1: The network structures of the model. (a): It starts with a Mapping Block for sparse to dense signal transformation,
followed by two Convolutional Blocks for spatial feature learning, and ends with a Mapping Block for dense domain mapping.
(b): The Mapping block: processes the spherical signal through SHT to convert it into SH coefficients, followed by ISHT
maps back to the spherical signal region. (c): The Convolutional block: performs SHT on the spherical signal, followed by
coefficients multiplication and ISHT.

Secondly, we multiply the HRTF SH coefficients a with a
convolution kernel k by Hadamard product, a ⊙ b, where b
is

b =

[
β00(1) · · · β00(L)

.

.

.
. . .

.

.

.
βn0(1) · · · βn0(L)

]
where βn0 is the m = 0 coefficient of kernel k. We realize
Eq. (4) by a linear combination of spherical harmonics and
associated coefficients αnm and βn0 [16],

(f ∗ k)(Ω) =
∞∑

n=0

n∑
m=−n

2π

√
4π

2n+ 1
αnmβn0Ynm(Ω). (8)

Eq. (8) represents the convolution of a single kernel
whose output is summed across the rows

∑L
i=1(a ⊙ b)i to a

(NH + 1)2 × 1 column vector. In a convolutional layer, there
can be u kernels and the layer output is u column vectors
concatenated to form u channels

c = [(

L∑
i=1

(a⊙ b)i)1, (

L∑
i=1

(a⊙ b)i)2, . . . , (

L∑
i=1

(a⊙ b)i)u].

(9)
Thirdly, we use ISHT to convert the multiplication back

into the spherical domain

Yc. (10)

3.3. Model

Network structure: The model structure is presented in Fig.
1 (a). Overall this model generates the output block contain-
ing the densely interpolated HRTF from an input block con-
taining the sparsely measured HRTF through a learnable ker-
nel.

The input and output are connected by the mapping block
Fig. 1 (b) and the convolution block Fig. 1 (c). The map-
ping block, Fig. 1(c), comprises of the SHT and the ISHT,

which aggregates the learned feature and maps back to the
{HM(Ω, l)}Ω∈Ωdense domain. The convolutional blocks, Fig.
1(c), consist of SHT (Eq. 7), a convolutional layer (Eq. 9),
and ISHT (Eq. 10). The sparse HRTFs undergo two con-
volutional blocks, which contain skip connections [17] and
rectified linear unit (ReLU) activation function [18].
Loss function: The logarithmic spectral distortion (LSD) be-
tween the true HM and predicted ĤM is used as the loss func-
tion of the model and performance measure across methods
in Sec. 4,

LSD =

√√√√ 1

PL

P∑
p=1

L∑
l=1

∣∣∣HM (Ωp, l)− ĤM (Ωp, l)
∣∣∣2. (11)

4. SIMULATION

In this section, we conducted experiments on HRTF interpo-
lation to assess the effectiveness of our proposed method, and
compare it with the SH method [6], the SH+DNN method
[19], HRTF field method [20], and the CNN+GAN method
[11].

4.1. Data pre-processing

Considering that multiple data sets need to be consistent [21]
and sub-models may appear [22], we chose to conduct exper-
iments exclusively on the HUTUBS dataset due to its exten-
sive subject coverage [23]. We employed 94 subjects with
duplicates excluded [23]. We used 77, 10, and 7 subjects to
generate training, validation, and test data, respectively. We
used ground truth 16 order SH coefficients to generate HRTFs
from 480 directions and across L = 93 frequency bins, span-
ning from 172 Hz to 16 kHz.
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Fig. 2: Directions of 360 unknown and 120 known HRTFs.

Table 1: Comparison of model Parameters and average LSD
for Unknown HRTFs across Subjects ID 88-94.

HRTF model Parameters Unknown
SH N = 8 [6] - 7.24
SH+DNN [19] 803241 5.11
HRTF field [20] 4458589 4.19
CNN+GAN [11] 100827332 4.36
Proposed 484530 2.25

4.2. Training

Fig. 2 shows the direction of 120 known HRTFs and 360
unknown HRTFs. The LSD (Eq. (11)) serves as the loss func-
tion for the training process. The training procedure used the
Adam optimizer [24] with a batch size of 14. Our model was
trained on a V100 GPU for about 700 epochs using a learning
rate of 0.001, with early stopping based on validation data.

4.3. Result and discussion

We conducted a comparative analysis by adopting interpo-
lation methods, including SH, SH+DNN, HRTF field, and
CNN+GAN. Table 1 provides insights into the number of
parameters and average LSD of learning-based methods for
unknown HRTFs across Subjects ID 88-94. Notably, the
proposed method exhibits the lowest parameter count due
to its streamlined architecture consisting of only two convo-
lution blocks. In contrast, both SH+DNN and HRTF field
methods rely on fully connected networks. SH+DNN re-
quires sub-networks training for each frequency bin while
CNN+GAN employs a generator with 11 conventional CNN
layers. This observation highlights the efficiency of our ap-
proach. Furthermore, our method achieves the lowest LSD.
The SH method with 8th-order coefficients performed worse
than SH+DNN with 4th-order coefficients, due to its inabil-
ity to accurately compute 8th-order coefficients with 120
known HRTFs. It indicates that the proposed method learns
from convolution blocks, rather than solely relying on direct
inferences through the mapping blocks.

We compare the HRTF interpolation performance of the
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Fig. 3: Interpolation LSD over frequencies.
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(c) HRTF field
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Fig. 4: The left ear HRTF at ϕ = π of Subject ID 89.

proposed model with the SH+DNN and HRTF field model
which has fewer parameters. Interpolating the high-frequency
part of HRTF (above 8kHz) is challenging. Fig. 3 confirms
that our method performs well in high frequencies. Fig. 4
showcases HRTF interpolation at ϕ = π. It provides a vi-
sual assessment of how well the methods fit the notch, which
represents a notable decrease at high-frequency, crucial for
sound source direction detection [1]. The ground truth ex-
hibits a peak in the 8 to 12 kHz frequency range. The other
two methods show a different spectral shape compared to the
ground truth. In contrast, our proposed method appropriately
captures the peaks and notches of the ground truth.

5. CONCLUSION

This paper proposed a spherical CNN method to interpolate
HRTFs based on sparse measurements. By leveraging the SH
transformation, the proposed method directly exploits spher-
ical information, eliminating the need for plane-sphere pro-
jection. Simulation results demonstrated that our method out-
performs both conventional SH methods and learning-based
methods. This method not only enhances HRTF interpola-
tion but also offers a compelling alternative to the widely em-
ployed SH method in soundfield reproduction tasks.
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